
20.02

An M&E industry that’s learned to adapt and excel
after a year like no other, for one

LOCALIZATION
Dubbing from home is a work in
progress

SECURITY
How to beat piracy and secure your
business during a pandemic

SMART CONTENT
The new ways content players are using
data to connect with consumers

NEW WORKFLOWS
Adopting the latest tools fuels a
successful change to remote work

WHAT’S NEXT?

2

SECURITY

By Ted Harrington, Executive Partner, Independent Security Evaluators

Security done early is less expensive
than security done later

HOW TO BUILD SECURITY
INTO THE DEVELOPMENT
PROCESS

Most mornings, I have a smoothie for breakfast. It’s
packed with wholesome stuff: organic spinach, bananas,
pea protein, cashew butter, and plenty of good ol’ H2O.
Once I’ve poured my smoothie, there are two ways I can
clean the blender:

1. Do it later. Let it sit in the sink while I rush off to
do other urgent things. When I come back later, those
nutritious ingredients have hardened and are a pain in
the neck to scrub clean. As a result, I have to soak the
blender, disassemble it, scrub it, and reassemble it.

2. Do it now. As soon as I pour out the smoothie, add
a little soap and water into the blender, run it for ten

seconds, and rinse. The thing literally cleans itself. No
disassembly, no scrubbing.

Doing it later is easier at first but a nightmare overall.
Doing it now is easier overall but often dismissed at first.

That’s the same scenario you are in as you decide
what to do about security. Most people unwittingly
pursue the approach that makes their lives harder. In-
stead, pursue the approach that makes your life easier. If
you want to do it the easy way, you need to take action
early by building security into the development process.
If you don’t, you’ve signed up for the hard way.

Build security into the development process: it is
more effective and less expensive than delaying security.

ABSTRACT: People often think ‘build first, then secure.” But that’s wrong — it’s both
more expensive and less effective to do it that way. Instead, replace that lie with this
truth: “secure as you build.’ This article explains why to build security into the develop-
ment process, and how to do it.

3

‘BUILD SECURITY IN’ IS LESS EXPENSIVE
THAN ‘BOLT SECURITY ON’
Security done early is less expensive than security done
later. This is thanks primarily to avoiding that unneces-
sary work while you also save on consulting fees. Upon
analyzing thirteen years of our own assessment data,
we discovered that companies who “built security in”
spent 10.1 percent less on consulting fees than those
who didn’t. That’s not a mind-blowing savings, but hey,
10.1 percent is 10.1 percent! That’s real money that
doesn’t go out your door. Why waste it? You might
not even realize it, but when you push security off until
later, you’re taking on that waste. You’re making it cost
more. This costs more because your security partner has
to spend more time and effort (which equates to your
money) in addressing a higher volume of security issues
than if those security issues had been addressed during
the development process first.

Better yet, as cool as it is to save 10.1 percent on
consulting fees, that pales in comparison to the savings
in terms of your effort. It’s easiest to fix a flaw at the
moment when it’s introduced. It’s exponentially harder
to fix it later. For example, a flaw introduced in the
design phase that isn’t addressed until after deployment
is going to require a ton more effort to fix. In fact, the
data shows it takes twenty-five times more effort.

Twenty. Five. Times. More. Effort.

That’s bananas!

Unlike consulting fees, these costs are not easily

visible on your financial statements. Something that
should take one hour now takes twenty-five hours. This
is straight-up lost efficiency. You just burned twen-
ty-four additional hours to get the same outcome if
you’d just done it earlier.

That’s nuts.
When developers are fixing systems they already

built, they’re not working on other things. Salary,
benefits, and overheads appear on company financial
statements either way; however, developers’ produc-
tivity plummets. This decreases the value the company
gets out of each developer. It’s a massive hit to your

Ted Harrington is the executive partner at Independent Security
Evaluators (ISE), the company of ethical hackers famous for hacking
cars, medical devices, and password managers. He’s helped hundreds of
companies fix tens of thousands of security vulnerabilities, including Google,
Amazon, Microsoft, Netflix, and more. ted@ise.io @ISEsecurity

output. If this isn’t alarming you, you’re not human.
No one likes waste, especially when it doesn’t improve
outcomes.

No rational person wants anything to be twenty-five
times harder than it needs to be. Yet, people do this
all the time. This happens not because people want to
make their lives harder; it happens because they don’t
realize it’s happening. My mission is to help you stop
incurring this waste. Whenever you postpone security,
you incur this terrible tradeoff. Every single time.

Introducing vulnerabilities is going to happen —
that’s a reality of software development (and is the
reason that this book exists). But it’s hugely inefficient
to let them linger in your system any longer than they
need to. The book Applied Software Management spells
out this truth. It explains that (a) most vulnerabilities
are introduced during development, but (b) most
testing isn’t done until after release, yet (c) remediation
costs rise exponentially after release.

It’s literally that simple: when you delay, it costs you.

You want to shrink that productivity hit. You want
to harvest that effort so you can use it for other things
instead. When you “build security in,” you convert this
waste into efficiency. You save effort. You maximize
productivity.

HOW TO ‘BUILD SECURITY IN’
Now that you’ve explored why to build security into
the development process, let’s talk about how. Simply
put: in each step of the development process, there’s a
security step, too.

Take it.

The later you secure, the more painful it becomes

4

That might sound like a big undertaking,
but really it’s not. It’s just a small change.
You already have all of the right people in
the right room having the right conver-
sations; you just need them to consider
security as well. The activities that are more
involved (such as security testing) are han-
dled by your security partner anyway, so the
additional burden on your own developers
is offloaded.

Many companies use a linear-sequential
software development methodology, such
as Waterfall. In this type of development
methodology, the entire development
project is approached as a whole, with each
phase being completed across the entire
system before the next phase begins. Here’s
how you’d build security into this type of
methodology:

n During requirements gathering, you
discuss the problem that the system needs to
solve. Simply expand the discussion to also
consider your threat model. The require-
ments of the system dictate the features
you’ll need to develop. That determines
which assets the system needs to access.
These determine which attackers to consider
and which attack surfaces to secure.

n During design, you define the system
architecture, determining which compo-
nents to build and how they’ll interact.
Those inform how to implement Defense in
Depth, a security approach that layers de-
fenses in order to both minimize likelihood
of breach and minimize damage resulting
from a breach. (We’ll explore this deeper in
a moment.)

n During implementation, you code the
system. You know which areas of code are
critical to security, and have those areas
reviewed for security flaws specifically.
You most likely aren’t doing the security
code review yourself anyway; your security
partner is. So this important step isn’t even
a burden on your developers.

n During testing, you evaluate system
performance. In addition to functional
testing, this is when you also do security
testing. It happens in parallel with other
testing efforts and is performed by your
security partner. This frees your engineering
resources to focus on other things. Vulner-
abilities are discovered and reported to you
so you can fix them. You’ll invest effort in
remediations, but as you learned in chapter
5, there’s a way to manage that effort so it
doesn’t overwhelm you.

n During deployment, you roll the
solution out to customers and deal with
the inevitable challenges that come with
that. Now is when you also advise custom-
ers on configuration so they deploy your
system securely. Whether this comes as
documentation or hands-on configuration
assessment (or both), they’re supplied by
your security partner. Thus, the system is
deployed securely without too much effort
from you.

n During maintenance, you’re in the
never-ending cycle of resolving bugs. Same
idea with security. Through reassessments,
your security evaluators help you continu-

WHEN DEVELOPERS are fixing systems they already built,
they’re not working on other things. Salary, benefits, and
overhead appear on company financial statements either way;
however, developers’ productivity plummets.

SECURITY

ally find and fix security flaws. As a result,
you keep your system secure over time, all
without too much heavy lifting by you.

SO, TO SUMMARIZE, YOUR SECU-
RITY EFFORTS LOOK LIKE THIS:
You can apply these same principles if you
adhere to an iterative methodology instead,
such as Agile, Scrum, Kanban, or Rapid
Application Development. Iterative meth-
odologies are where a large development
project is broken down into smaller chunks.
Development then cycles through require-
ments, design, implementation, testing, and
deployment on each feature (rather than
on the entire project, as you would in a lin-
ear-sequential development methodology).
These features are often referred to as “user
stories,” which describes the feature from
an end user’s perspective. To build security
into this type of development process, all
of the same actions mentioned above occur,
done for each feature (or “user story”) as
you cycle through them. Here’s how:

 Whether you use a linear-sequential
development process like Waterfall or an
iterative one like Agile, you can — and
must — build security in. If this guidance
still doesn’t address your unique develop-
ment challenges, I’m only an email away:
ted@tedharrington.com. Contact me and
I’ll point you in the right direction.

As one of our security analysts put it,
“Think about security when you’re doing
things, not after you already did things.”

