
22.02
SECURITY SOLUTIONS
The threats to our most valuable assets are many.
M+E vendors are on top of it.

WORKFLOWS AND THE CLOUD
Much has changed in the way we track, access,
move and store everything we deal with.

SMART CONTENT
The many ways the industry adopts new
technologies to make content smarter.

TO CHAOS
GIVING VOICE

Today’s localization
challenges are enormous.

The opportunities are
unprecedented.

Is the industry ready for
the mayhem?

2

SECURITY SOLUTIONS

By Jasmina Omic, Product Manager Services, Riscure

Most modern devices are equipped with TEE

ATTACKING REAL-WORLD
APPLICATION OF TEE SECURITY

The Trusted Execution Environment (TEE), a technology enabling developers
to delegate security functions to a separate secure environment apart from the
normal execution environment, has gained significant interest and is widely ad-
opted by the payment industry, media, and entertainment as well as the Internet
of Things (IoT).

Most modern devices including general-purpose computers, smartphones,
and TVs are equipped with TEE. The main advantage of delegating such security
functions to an isolated environment such as TEE is its logical and physical
separation from the Rich Execution Environment (REE) which can be prone to
insecure software. Developing secure TEEs is paramount for the secure applica-
tion of TEE technology within the automotive industry.

Riscure experts and the rest of the security industry have investigated TEE
security in-depth over the last few years. One of such investigations looked into
how strong Samsung’s TEE OS is and whether it can be compromised to obtain
runtime control and extract all protected assets, allowing, e.g. decryption of user
data. This research was conducted by Federico Menarini in 2019. You can find
the full blog series named “Breaking TEE Secuirty” on our website. All identified
vulnerabilities were reported to Samsung and fixed at the end of 2019.

In this article, we share how we found vulnerabilities in TAs running in TEE-

ABSTRACT: In the last few years,
Trusted Execution Environments
(TEEs) have gained popularity in
the Android ecosystem. Riscure
analyzed the TEE security of a
real-world application available in
the market. For Samsung’s
TEEGRIS TEE OS as implemented
in their Galaxy S10, we identify
vulnerabilities and discuss
techniques used by attackers to
exploit them.

3

GRIS, and how we exploited one TA to gain runtime
control and further escalate privileges and gain access to
the full TEE memory. To start, let’s understand what
TEE is and how it works in OS first.

In short, there are three types of separations that a
robust TEE is expected to implement both in hardware
and software:

n Separation between TEE and REE
n Separation between TAs and TEE kernel
n Separation between Tas

The transition between secure/non-secure modes is
managed by a component called “secure monitor.” This
monitor is the primary interface between the TEE and
REE and is the only component that can change the
security state of a core.

While a fully isolated environment would be very
secure, for it to be practically useful, it needs to com-
municate with other untrusted components running
in Android. Communication between the REE and the
TEE is done with the “Secure Monitor Call” (SMC).
This instruction can be invoked by both worlds at EL
> 0, which means that Android applications cannot
directly initiate communication with the secure TEE.
What normally happens is that the Linux kernel acts as
a proxy and exposes a driver that can be used by apps to
interact with the TEE.

The TEEGRIS kernel is a small component running
in secure EL1. Even though it is small, it is not exactly a
microkernel, and for instance, it integrates several driv-
ers that can be used by TAs. Since the kernel is stored in
plain text in the boot partition, it can be easily extracted
and disassembled.

Although TAs in TEEGRIS can be easily disassem-
bled to search for vulnerabilities, there are a set of pro-
tection mechanisms that prevent exploitation of those
vulnerabilities some of which include ASLR, anti-roll-
back and stack canaries.

During the investigation, we overcame some used
countermeasures in kernel and TAs. We found that
by exploiting a type confusion in variable delivered to

TA enabled us to chaining three commands, we could
obtain both read and write primitives in a particular
TA which is a significant achievement since TAs are
supposed to be secure and completely isolated from the
untrusted Android OS.

EXPLOITED MITIGATIONS XN
(EXECUTE NEVER)

RISCURE EXPERTS AND THE REST
OF THE SECURITY INDUSTRY have
investigated TEE security in-depth
over the last few years.

Jasmina Omic handles product manager services for Riscure and has worked in the security
field for more than 14 years. In her current position she is driving security services, and focuses
on providing guidance for Riscure customers, based on eight years of hands-on experience as
a security analyst for IC and embedded devices, working under different certification schemes
and testing approaches. inforequest@riscure.com @Riscure

The attack route.

This countermeasure is used in both kernel and TAs,
so data memory is never executable, and code is never
writable. We, however, obtained arbitrary read using
type confusion vulnerability, write, and code execution
within the TA, but XN only allows reusing existing code.

ASLR AND KASLR
We overcame this address space randomization of TAs
and kernel by attempting multiple times as nothing
prevents us from trying again to talk to the same TA, ac-
cess the same random address, and see if we hit mapped
memory. This can be repeated several times until the
address we tried to access is mapped. Since the possible

THE ATTACK WAS EXECUTED THROUGH
MULTIPLE STEPS:

SECURITY SOLUTIONS

4

random numbers are only 32k, finding lucky random can be usually
achieved within less than one minute. PAN and PXN are in place to
prevent the kernel from accessing or executing user-mode memory.

STACK CANARIES (IN THE KERNEL AND TAS)
Stack canaries protect against buffer overflow vulnerabilities.
We found a textbook stack-based buffer overflows, in which we
control the size of the copy and the buffer contents. In total,
up to 1275 bytes can be copied, enough for storing shellcode.
However, the TA uses stack canaries, therefore exploitation
of this vulnerability is not trivial. Since we have arbitrary read
and ASLR bypass, we can simply read the value of __stack_chk_
guard and fill it in our shellcode so that the canary verification
succeeds.

PRIVILEGE ESCALATION AND ACCESS TO FULL TEE
MEMORY
We take our investigation one step further to gain runtime control
of the TEE kernel. Historically, exploit mitigations in TEE OSes
have been lackluster compared to other modern OSes. However,
for our attack success multiple vulnerabilities in TEE need to be
exploited.

The kernel exposes a driver that can be used by privileged TAs
to map physical memory into the TA memory space. We will
leverage this driver from the hacked TA to map secure registers
and unprotect the TEE memory. Finally, we use the same hacked

TA to modify the hypervisor page tables and allow Android apps
to map the (now unprotected) TEE memory with complete read/
write access.

We focused our attack on registers since they contain all the
configurations of peripherals, including the ones used to secure
the TrustZone. The two registers that are commonly used for
configuring TrustZone are TZASC and TZPC. If a TA could
access any of them, it would be possible to read the contents of
such registers but also write to them, removing the protection of
TEE memory. In principle, modifying any of the two could allow
the REE to access the TEE, effectively compromising the security
provided by the TEE. We decided to target the TZASC using our
exploit and remove the protection of the TEE memory space. We
managed to map all the TEE memory into an Android applica-
tion, meaning that we can:

n Modify the code of TAs and TEE kernel since the permissions
restrictions do not apply to the Android application;

n Bypass countermeasures implemented in the kernel such as
KASLR, PAN, and PXN;

n Gaining full TEE control and performing attacks like modifying
the phone unlock functionality implemented in the TEE (finger-
print or face recognition) to bypass the screen lock.

